Please wait...
stdClass Object
(
    [nazev] => Hydrogel Machines at UCT Prague
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 1
    [google_verification] => UOa3DCAUaJJ2C3MuUhI9eR1T9ZNzenZfHPQN4wupOE8
    [ga_account] => UA-10822215-5
    [ga_domain] => 
    [ga4_account] => 
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 
    [pozadi1] => 
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'hydrogel.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8549/45454/45462
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 45462
    [platne_od] => 18.12.2018 09:23:00
    [zmeneno_cas] => 18.12.2018 09:32:38.189644
    [zmeneno_uzivatel_jmeno] => Antonín Mareš
    [canonical_url] => 
    [idvazba] => 50423
    [cms_time] => 1714702982
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [preloader] => Please wait...
            [logo_href] => /
            [logo] => home
            [logo_mobile_href] => /
            [logo_mobile] => home
            [google_search] =>  
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] =>  
            [intranet_text] =>  
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Search
            [mobile_over_nadpis_jazyky] => Languages
            [mobile_over_nadpis_login] => Login
            [menu_home] => Homepage
            [aktualizovano] => Updated
            [autor] => Author
            [paticka_mapa_odkaz] => /name-and-address
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:rehori@vscht.cz [zobraz_desktop_verzi] => switch to desktop version [drobecky] => You are here: Homepage [more_info] => [zobraz_mobilni_verzi] => [social_in_odkaz] => [nepodporovany_prohlizec] => [social_li_odkaz] => ) [poduzel] => stdClass Object ( [45499] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [45500] => stdClass Object ( [obsah] => [iduzel] => 45500 [canonical_url] => [skupina_www] => Array ( ) [url] => /[menu-jazyky] [sablona] => stdClass Object ( [class] => api_html [html] => [css] => [js] => [autonomni] => 1 ) ) [45501] => stdClass Object ( [obsah] => [iduzel] => 45501 [canonical_url] => [skupina_www] => Array ( ) [url] => /[menu-main] [sablona] => stdClass Object ( [class] => api_html [html] => [css] => [js] => [autonomni] => 1 ) ) [45502] => stdClass Object ( [obsah] => [iduzel] => 45502 [canonical_url] => [skupina_www] => Array ( ) [url] => /[menu-top] [sablona] => stdClass Object ( [class] => api_html [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 45499 [canonical_url] => [skupina_www] => Array ( ) [url] => /[en]/45499 [sablona] => stdClass Object ( [class] => dokument [html] => [css] => [js] => [autonomni] => 1 ) ) [45506] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [45507] => stdClass Object ( [nazev] => Home [seo_title] => Hydrogel Machines [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [iduzel] => 45507 [canonical_url] => [skupina_www] => Array ( ) [url] => /homeen [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [56484] => stdClass Object ( [nazev] => Media highlights [seo_title] => Media highlights [seo_desc] => [autor] => [autor_email] => [obsah] =>

Czech articles

https://www.svetchytre.cz/a/pUZaW/cesti-vedci-vyvinuli-mikroskopicke-roboty-ze-zlata-pomuzou-napriklad-v-biomedicine

https://www.technickytydenik.cz/rubriky/denni-zpravodajstvi/mikroroboti-z-gelu-a-zlata-rizeni-svetlem_50495.html

https://techfocus.cz/gadgets/2103-robot-o-velikosti-lidske-bunky-ktery-je-na-dalku-napajen-i-navigovan-svetlem.html

http://ceskavedadosveta.cz/cesti-vedci-se-podileli-na-objevu-noveho-rizeni-mikrorobotu-pomoci-castic-zlata/

https://www.tyden.cz/rubriky/veda/cesti-vedci-se-podileli-na-objevu-noveho-rizeni-mikrorobotu_544500.html

https://sciencemag.cz/mikroroboti-z-gelu-a-zlata-rizeni-svetlem/

https://techfocus.cz/veda-vesmir/2099-novy-objev-ceskych-vedcu-odhali-padelana-leciva-a-posune-vyvoj-umelych-tkani.html

https://www.respekt.cz/informacni-servis/2020-05-27

https://eurozpravy.cz/veda-a-technika/veda/objev-ceskych-vedcu-pomuze-odhalit-padelana-leciva.f0974c91/

http://www.24zpravy.com/tech/objev-ceskych-vedcu-pomuze-odhalit-padelana-leciva/427180-zpravy

https://www.tyden.cz/rubriky/veda/objev-ceskych-vedcu-pomuze-odhalit-padelana-leciva_544272.html

https://www.cysnews.cz/ostatni/novy-objev-odhali-padelana-leciva-a-posune-vyvoj-umelych-tkani/

https://media.monitora.cz/pdf-preview/1976/84369542-80531973c3e60af049de/

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 56484 [canonical_url] => [skupina_www] => Array ( ) [url] => /media [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45510] => stdClass Object ( [nazev] => Open positions [seo_title] => Open positions [seo_desc] => [autor] => [autor_email] => [obsah] =>

We are looking for motivated Bc, Msc and PhD.  students!

Currently one funded PhD. position available!

This project combines chemical and lithographic approaches to create interactive autonomous hydrogel microcrawlers that locomote through periodic actuation when exposed to an appropriate stimulus (light, magnetic field). The crawlers’ trajectories are controlled by external field gradients in a similar manner to photo, chemo and magnetotaxis in unicellular organisms, which allows controlling simultaneously position of multiple crawlers in both space and time. Such crawlers can be used to autonomously manipulate microobjects, deliver chemical cargo to the place of interest or probe and report on the composition of their surroundings. Reversible assembly of the crawlers into ordered macroscopic actuating structures is the next goal of the project.

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 45510 [canonical_url] => [skupina_www] => Array ( ) [url] => /open-positions [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45509] => stdClass Object ( [nazev] => People [seo_title] => People [seo_desc] => [autor] => [autor_email] => [perex] =>

Current team members:

[ikona] => skupina [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

   

Ivan Rehor

Group leader

Researchgate profile

Yadu Nath Vakkipurath Kodakkadan

Ph.D. student

Charlie-Processed (originál)

Charlie Maslen

Ph.D. student

 

Damla Orhan

Ph.D. student

Jindrich Kropacek

Master student

 

Renata Svecova

Bachelor student

 

Eliska Pazderkova

Bachelor student

Jan Duras

Bachelor student

Radek Homola

Bachelor student

[urlnadstranka] => [iduzel] => 45509 [canonical_url] => [skupina_www] => Array ( ) [url] => /people [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [45511] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => kniha [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>
J. Vrba, C. Maslen, J. Maxova, J. Duras, I. Rehor and J. Mares, An automated platform for assembling light-powered hydrogel microrobots and their subsequent chemical binding Journal of Computational Science, 2021, 101446. https://doi.org/10.1016/j.jocs.2021.101446

P. Sharan, C. Maslen, B. Altunkeyik, I. Rehor, J. Simmchen and T. D. Montenegro-Johnson, Fundamental Modes of Swimming Correspond to Fundamental Modes of Shape: Engineering I-, U-, and S-Shaped Swimmers Advanced Intelligent Systems, 2021, https://doi.org/10.1002/aisy.202100068

Y. N. V. Kodakkadan, C. Maslen, P. Cigler, F. Štěpánek and I. Rehor, Friction-Directed Self-Assembly of Janus Lithographic Microgels into Anisotropic 2D Structures, J. Mater. Chem. B, 2021, 9, 4718–4725. https://doi.org/10.1039/D1TB00572C

 ◳ cover (png) → (výška 215px)

  Kodakkadan, Y. N. V.; Idzakovicova, K.; Sepitka, J.; Napel, D. ten; Safai, E.; Cigler, P.; Štěpánek,    F.; Rehor, I.    Arbitrarily-Shaped Microgels Composed of Chemically Unmodified Biopolymers.    Biomater. Sci. 2020.    https://doi.org/10.1039/C9BM02056J.

  

   Rehor, I.; Maslen, C.; Moerman, P. G.; van Ravensteijn, B. G. P.; van Alst, R.; Groenewold,    J.; Eral, H. B.;    Kegel, W. K. Photoresponsive Hydrogel Microcrawlers Exploit Friction    Hysteresis to Crawl by    Reciprocal Actuation. Soft Robot. 2020.    https://doi.org/10.1089/soro.2019.0169

 
 


Vavra, J.; Rehor, I.; Rendler, T.; Jani, M.; Bednar, J.; Baksh, M. M.; Zappe, A.; Wrachtrup, J.; Cigler, P. Supported Lipid Bilayers on Fluorescent Nanodiamonds: A Structurally Defined and Versatile Coating for Bioapplications. Advanced Functional Materials 2018, 28 (45), 1803406. https://doi.org/ 10.1002/adfm.201803406.

Rehor, I.; van Vreeswijk, S.; Vermonden, T.; Hennink, W. E.; Kegel, W. K.; Eral, H. B. Biodegradable Microparticles for Simultaneous Detection of Counterfeit and Deteriorated Edible Products. Small 2017, 13 (39), 1701804. https://doi.org/ 10.1002/smll.201701804.
Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the Nanobiointerface of Fluorescent Nanodiamonds: Highly Selective Targeting of Glioma Cancer Cells. Nanoscale 2015, 7 (2), 415–420. https://doi.org/ 10.1039/C4NR02776K.
Rehor, I.; Lee, K. L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; et al. Plasmonic Nanodiamonds: Targeted Core–Shell Type Nanoparticles for Cancer Cell Thermoablation. Adv. Healthcare Mater. 2015, 4 (3), 460–468. https://doi.org/ 10.1002/adhm.201400421.
Petrakova, V.; Rehor, I.; Stursa, J.; Ledvina, M.; Nesladek, M.; Cigler, P. Charge-Sensitive Fluorescent Nanosensors Created from Nanodiamond. Nanoscale 2015. https://doi.org/ 10.1039/C5NR00712G.
Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.-P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; et al. Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small 2014, 10 (6), 1106–1115. https://doi.org/ 10.1002/smll.201302336.
Rehor, I.; Mackova, H.; Filippov, S. K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; et al. Fluorescent Nanodiamonds with Bioorthogonally Reactive Protein-Resistant Polymeric Coatings. ChemPlusChem 2014, 79 (1), 21–24. https://doi.org/ 10.1002/cplu.201300339.

Řehoř, I.; Macháčková, L.; Bučánková, A.; Matějková, S.; Černá, K.; Straka, J. Measuring the Sugar Consumption of Larvae in Bumblebee Micro-Colonies: A Promising New Method for Tracking Food Economics in Bees. Apidologie 2014, 45 (1), 116–128. https://doi.org/ 10.1007/s13592-013-0233-6.

Rehor, I.; Cigler, P. Precise Estimation of HPHT Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diamond and Related Materials 2014, 46, 21–24. https://doi.org/ 10.1016/j.diamond.2014.04.002.

Chu, Z.; Zhang, S.; Zhang, B.; Zhang, C.; Fang, C.-Y.; Rehor, I.; Cigler, P.; Chang, H.-C.; Lin, G.; Liu, R.; et al. Unambiguous Observation of Shape Effects on Cellular Fate of Nanoparticles. Scientific Reports 2014, 4, 4495. https://doi.org/ 10.1038/srep04495.

Havlik, J.; Petrakova, V.; Rehor, I.; Petrak, V.; Gulka, M.; Stursa, J.; Kucka, J.; Ralis, J.; Rendler, T.; Lee, S.-Y.; et al. Boosting Nanodiamond Fluorescence: Towards Development of Brighter Probes. Nanoscale 2013, 5 (8), 3208–3211. https://doi.org/ 10.1039/C2NR32778C.

Berkova, Z.; Jirak, D.; Zacharovova, K.; Lukes, I.; Kotkova, Z.; Kotek, J.; Kacenka, M.; Kaman, O.; Rehor, I.; Hajek, M.; et al. Gadolinium- and Manganite-Based Contrast Agents with Fluorescent Probes for Both Magnetic Resonance and Fluorescence Imaging of Pancreatic Islets: A Comparative Study. ChemMedChem 2013, 8 (4), 614–621. https://doi.org/ 10.1002/cmdc.201200439.
Řehoř, I.; Vilímová, V.; Jendelová, P.; Kubíček, V.; Jirák, D.; Herynek, V.; Kapcalová, M.; Kotek, J.; Černý, J.; Hermann, P.; et al. Phosphonate–Titanium Dioxide Assemblies: Platform for Multimodal Diagnostic–Therapeutic Nanoprobes. J. Med. Chem. 2011, 54 (14), 5185–5194. https://doi.org/ 10.1021/jm200449y.

Řehoř, I.; Kubíček, V.; Kotek, J.; Hermann, P.; Száková, J.; Lukeš, I. Modification of Nanocrystalline TiO2 with Phosphonate- and Bis(Phosphonate)-Bearing Macrocyclic Complexes: Sorption and Stability Studies. Eur. J. Inorg. Chem. 2011, 2011 (12), 1981–1989. https://doi.org/ 10.1002/ejic.201001100.

Řehoř, I.; Kubíček, V.; Kotek, J.; Hermann, P.; Lukeš, I.; Száková, J.; Vander Elst, L.; Muller, R. N.; Peters, J. A. 1H NMR Relaxivity of Aqueous Suspensions of Titanium Dioxide Nanoparticles Coated with a Gadolinium(III) Chelate of a DOTA-Monoamide with a Phenylphosphonate Pendant Arm. J. Mater. Chem. 2009, 19 (10), 1494–1500. https://doi.org/ 10.1039/b817065g.
Kubíček, V.; Řehoř, I.; Havlíčková, J.; Kotek, J.; Císařová, I.; Hermann, P.; Lukeš, I. Synthesis and Coordination Behavior of Symmetrical Tetraamine Phosphinic Acids. Eur. J. Inorg. Chem. 2007, 2007 (24), 3881–3891. https://doi.org/ 10.1002/ejic.200700010.

Book chapters:

Řehoř, I.; Šlegerová, J.; Havlík, J.; Raabová, H.; Hývl, J.; Muchová, E.; Cígler, P. Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications. In Carbon Nanomaterials for Biomedical Applications; Zhang, M., Naik, R. R., Dai, L., Eds.; Springer Series in Biomaterials Science and Engineering; Springer International Publishing, 2016; pp 319–361. https://doi.org/ 10.1007/978-3-319-22861-7_11.

Slegerova, J.; Rehor, I.; Havlik, J.; Raabova, H.; Muchova, E.; Cigler, P. Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine. In Intracellular Delivery II; Prokop, A., Iwasaki, Y., Harada, A., Eds.; Fundamental Biomedical Technologies; Springer Netherlands, 2014; pp 363–401.

[urlnadstranka] => [iduzel] => 45511 [canonical_url] => [skupina_www] => Array ( ) [url] => /publications [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45508] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

Our Mission:

In our group, we combine chemical and lithographic approaches to create interactive programable hydrogel microparticles (microgels) which  serve as microscopic soft robots, building blocks for artificial tissues, in-vivo sensors, and others. To achieve that, we aim to develop following key abilities of the microgels:

Responsiveness

The microgel detects changes in its environment and respond to them 

Mobility

The microgel reaches the desired location in (biological) environment, either passively by tailored set of properties, or actively through microgel locomotion, resembling motion of unicellular organisms.

Connectivity

Individual microgels can assemble autonomously into ordered structures.

Temporal programming

The microgel properties are subject to pre-programmed spontaneous changes.

Biocompatibility

The microgels consist from materials tolerated in-vivo to avoid adverse interactions with their living surrounding.

 

Our research projects include:

Artificial Cells

Lithographic Bio-microgels

Authenticity labels for pharmaceuticals

Hydrogel Robots

Self-assembly

[urlnadstranka] => [iduzel] => 45508 [canonical_url] => [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [49586] => stdClass Object ( [nazev] => Sitemap [seo_title] => Sitemap [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [obrazek] => [iduzel] => 49586 [canonical_url] => [skupina_www] => Array ( ) [url] => /sitemap [sablona] => stdClass Object ( [class] => sitemap [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 45506 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Research
    [seo_title] => Research
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

Our Mission:

In our group, we combine chemical and lithographic approaches to create interactive programable hydrogel microparticles (microgels) which  serve as microscopic soft robots, building blocks for artificial tissues, in-vivo sensors, and others. To achieve that, we aim to develop following key abilities of the microgels:

Responsiveness

The microgel detects changes in its environment and respond to them 

Mobility

The microgel reaches the desired location in (biological) environment, either passively by tailored set of properties, or actively through microgel locomotion, resembling motion of unicellular organisms.

Connectivity

Individual microgels can assemble autonomously into ordered structures.

Temporal programming

The microgel properties are subject to pre-programmed spontaneous changes.

Biocompatibility

The microgels consist from materials tolerated in-vivo to avoid adverse interactions with their living surrounding.

 

Our research projects include:

Artificial Cells

Lithographic Bio-microgels

Authenticity labels for pharmaceuticals

Hydrogel Robots

Self-assembly

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'hydrogel.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/research' [newurl_iduzel] => 45508 [newurl_path] => 8549/45454/45462/45506/45508 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 45508 [platne_od] => 10.12.2018 16:09:00 [zmeneno_cas] => 10.12.2018 16:09:19.931046 [zmeneno_uzivatel_jmeno] => Ivan Řehoř [canonical_url] => [idvazba] => 50588 [cms_time] => 1714702982 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [45596] => stdClass Object ( [nazev] => Artificial Cells [seo_title] => Artificial Cells [seo_desc] => Artificial Cells [autor] => [autor_email] => [obsah] =>

Red blood cell has a discoidal shape around 10 μm in diameter and circulates effortlessly through the bloodstream, although the capillaries are as thin as 5 μm. This unique ability is given by their shape, mechanical properties (elasticity, shear thinning) and surface. In this project, we aim to synthesize degradable hydrogel microparticles that mimic these red blood cells properties and thus have in their ability to circulate in the bloodstream for a prolonged period of time (days). These microgels will be used for remote sensing of blood composition.

Figure: Lithographic hydrogel microparticle mimicks the size and shape of the red blood cell

[urlnadstranka] => [poduzel] => Array ( ) [iduzel] => 45596 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/acells [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45612] => stdClass Object ( [nazev] => Lithographic Bio-microgels [seo_title] => Lithographic Bio-microgels [seo_desc] => [autor] => [autor_email] => [obsah] =>

Microgels proved to be an essential tool in many biomedical applications, including drug release, tissue engineering or cell therapy applications. The control over microgel size, shape, chemical composition and mechanical properties is required in these applications. Lithographic synthesis of the microgels is the only known way to achieve this control. These, however, require synthetic photocrosslinkable polymers, which can induce biocompatibility issues upon their in-vivo application. The use of natural biopolymers in bioapplications would represent a superior alternative, but natural biopolymers cannot be shaped using photolithographic techniques.
In this project, we are developing a general method for large-scale lithographic continuous synthesis of arbitrarily shaped microgels, composed from chemically non-modified biopolymers.

Figure: Sechematic process of microgel fabrication

Figure: Arbitrarily-shaped alginate microgels

Kodakkadan, Y. N. V.; Idzakovicova, K.; Sepitka, J.; Napel, D. ten; Safai, E.; Cigler, P.; Štěpánek, F.; Rehor, I. Arbitrarily-Shaped Microgels Composed of Chemically Unmodified Biopolymers. Biomater. Sci. 2020. https://doi.org/10.1039/C9BM02056J

[urlnadstranka] => [obrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 45612 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/biomicro [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45614] => stdClass Object ( [nazev] => Authenticity microlabels [seo_title] => Authenticity microlabels for pharmaceuticals [seo_desc] => [autor] => [autor_email] => [obsah] =>

Counterfeit consumer goods are on the rise globally. The situation is extraordinarily alarming in the case of pharmaceutical products, 10% of all pharmaceuticals sold world-wide are counterfeits or of substandard quality, reaching 30% in developing countries. We developed multifunctional biodegradable hydrogel microparticles as taggants for food and pharmaceutical products. The microparticles provide simultaneous information on the product authenticity and safety directly prior to consumption. The authenticity information is embedded in the microparticle topography as a binary code. The product safety of liquid products—the presence of the pathogens and the potential product deterioration due to improper storage—is reported through the sensors embedded in the microparticle structure. The authenticity code and the sensor information are acquired with a standard bright-field/fluorescent microscope or even low-cost microscopic smartphone addon.

Figure: Microbarcodes, composed from biodegradable hydrogel, placed on various pharmaceutical products 

[urlnadstranka] => [poduzel] => Array ( ) [iduzel] => 45614 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/microlabels [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45608] => stdClass Object ( [nazev] => Hydrogel Robots [seo_title] => Hydrogel Robots [seo_desc] => [autor] => [autor_email] => [obsah] =>

Miniaturization of robots can radically change multiple areas of human activity, such as healthcare, where microrobots were proposed for various applications including cell/drug delivery or microsurgery. Pivotal to the development of such robots is exploring of untethered locomotion mechanisms that are efficient on the microscale. In our projects we are developing hydrogel microrobots lovcomoting through swimming or crawling, harvesting electromagnetic radiation from their surrounding for their propulson. The robots are taylored for specific tasks, for example as micromanipulators.

Figure: Hydrogel Microcrawler driven by focused laser

Rehor, I.; Maslen, C.; Moerman, P. G.; van Ravensteijn, B. G. P.; van Alst, R.; Groenewold, J.; Eral, H. B.; Kegel, W. K. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Robot. 2020. https://doi.org/10.1089/soro.2019.0169.
[urlnadstranka] => [obrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 45608 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/hydrobots [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [45609] => stdClass Object ( [nazev] => Self-Assembly [seo_title] => Self-Assembly [seo_desc] => [autor] => [autor_email] => [obsah] =>

Complex structures in nature are often composed of elemental subunits, which are not mounted together by an intelligent designer, instead they spontaneously self-assemble based on protocols 'coded' in each subunit. Taking inspiration form the nature and use self-assembly  in man-made systems is a tempting alternative to current manufacture routines, relying mainly on direct ‘pick and place’ techniques. Numerous functional self-assembling systems were reported at supramolecular and even colloidal scale. At larger lengthscales, however, utilization of self-assembly as a construction approach is scarce, mainly due to the absence of thermal motion of micro/macroscaled building blocks. We aim to exploit the methods of microscale self-assembly for construction of ordered structures and subsequently use these as self-assembled artificial tissues and as self-assembled robots.

Figure: Microgel discs 100 micron in diameter, assembled into ordered hexagonal sheet. 

[urlnadstranka] => [poduzel] => Array ( ) [iduzel] => 45609 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/sassembly [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.
switch to desktop version